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Abstrari

A coupling of electromapnetisn with a previousty developed scalar theory ol grevitation
is presented. The principle features of this coupling are: (1) a slight alterziion to the
$anxwell equatinns, {2} the motion of a char gsﬁ particle satisfizs 2n equetion whh the
Lorentz force appearing on the right side in place of zero, and 3) the energy density of
the electromagnetic field appears in the gravitational ﬁﬂd squatiop in & mangser similar
tothe mass term in the Klein-Gordoneguation. The ield of a static, spherically synumetric
charged particie is computed. The electromagnetic fizld givas rise 1o 1/r? tenms in the
gravitational potential,

In 2 previous paper, Lindén (1972), a scalar theory of gravity was
developed. In the presest article 1 should like to indicate how this theory
may be unified with electromagaetism and what the consequent changes {6
Mazwell’s cquations arg. We shall adhere 10 the MKS systewi of units,

ince the speed of light was taken 1o b related 10 the gravitational potential
through the formula
€= a2 M

then we must expect that either the electric permittivity or the magnetic
permeability on both will be dependent on the gravitational field. The
electromagnetic field tensor, Fy, is derived from the vector poiential A,
by the formula )

F;;=09,4,—9;4; {2}
and is explicitly given by
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in terros of contravariant components we have

. {6 -b, —-D, ~B,
: b & -H, H.
1 e 72 3 2

b, -, H, 0]}

where we have used the relations

B=ypH, D=¢E  and == c*u 33

Also, the metric tensor has the form
gi;=diag(c?, 1,1, -1} {8)
in.a Cartesion system of coordinates. We also define the dual 1o Fyj, F*¥, as
Pt = 3 M By | U

where £ js the Levi-Cevita symbol. The dual reads explicitly.

o B B B\
B, 0 -& Ez}

FU={ B E 0 -E &)
B -E, E 6/
The Maxwell equations are
UV (R F) = V(=) ©)
S (-g)F*) =0 {10)

where J7 is the current density vector. In vector notation these equations
read,

V. (cuD) = cup (;1)

V x ()~ a(cgn) =cud (12)
V.(cB)=0 (13)

VX (B + 3("3} =0 (14

If we consider a system of ¥ chargeé particles, the equatioms of moticn
and the field equations are derivable from a variational principle

F; f dxPE=0 (15
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where the Lagrangean density is given by
F IR P z e [ dcne )k, (16)

where ¢, is the charge of the wth particle, o, s the normalised charge
distribution times +/—g and 7' its coordinates. This definition of & is chosen
by the analogy with a point zource in four dimensions which is siven by s
four-dimensional delta function {i.e. & product of four simple delta fune-
tions) divided by +/—g. Before leaving these preliminary considerations,
we note that the first term in the free elecrromagnetic field Lagfangc&r
density is

S
S 2 E? {1
?fc( B czE ) (17}
WOESE J = i Fi fp wnd the #; are the scale facfors in a coordinate system
m whgch the metric tensof is n
gy =diag(e?, ~#.%, -k, ~ £} (18}

The Lagraapean densiiy for fize gzﬁﬁmm st Beld and 3 svstem of

dr < o : ‘
= ‘g“f/(‘“g)@ d;i L“;E‘Eng‘;g j d‘:,i(x’,f‘f}{i "{“’x}j‘guiljj (29}

1he fagrangean density for the combined gravitational field, the electro-
magnetic feld and a system of charged particles is then

=5t (20)

where x Is the constani, coupiing the slectromagnetic to the gravirational
feld.
The variation of the action
S == g & xZ (21}

with respect to the z* gives the equations »f mc;icsn, In doing so we shall
take p, and o, to be delra functions which gives

4o, G(1 + 9)?
ds[m?—w**guzj‘r rceugcx-" ]

_ F2nm, G{l dﬁ)'a s o } M
. a_,[) g et 4l @)

where we have dropped the label o on z'since it is clear this is the equation
of moticn of the zth pam’ch

st ¥ o e B e e e

1o ua:umt m‘, &Uuyxmv Consiant, we ¢
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‘and introduce 2%==¢ a5 the independent variable, Then we bave that ¢

g 2y L X 2 i
=17 P\ et 4
dt (i c’) df 4=z J

g %@ 5
m”i“gifmﬁaﬂe ”’2‘[5‘ Ay 1233

We see that
. ad o~
- 4nG __47:29 & 24
Uo€o* & -

and thus x is about 1072¢ Farad/kg. Substituting from (24) into (22) gives

4
;mﬂxi !E} g_t)z"..., O £ YL f 1
= 7 &fr«»” d)}zgjﬁ 2o 8o picA ] # (25)
The second tevm in the brackets on the left side of {25 muy be wmeitten
0 ueiny Y
3o A2 26}
so that (25) becomes
d. g [m, Vs
i+ P g2~ gm0 s oy ors

bl Eo[aj(ﬂ'?{éi} —Siped iy 27

It will be convenient to introduce the dependence of the electromagnatic
influence parameters, ¢ and i on @. A sufficient choice according to equa-
tions (1) and (5) is? '

= e
&= g5 e
so that {27) reduces to

~f(i +¢‘)2gu2‘]—*a [0+ @) gul!

e& e
#F {28
m: Py i3 14- )
“The right side of (28) is simp!y the Lorentz force acﬁng on the particle.
-The action functional, &/, is dependent on the gravitational potential &,
the electromagnetic poterntials 4; and the coordinates Z{,y of the N particles,
o =1,...N. We might express thxc dependence by the formula

M = &!i(ﬁ, :’i’g,Z{j_), Z(iz), ng)} (29}

+ Prof. Poeverlein has remarked to me that this choice has the advantage that the wave
impedance of an electromagnetic wave is independent of @. This is a good basis for
mmaking this choice. .
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One has all in all ¥ equations of motions such as {28) by varying the Z%.
By varying the A4, the Maswell equations (9) and {10} resplf and finally by
varying & wa have the equation of the gmvxtatmnal ﬁf:{d

Now, the only termi in the electromagnetic Lagranpean, %9, which
vontains the gravitational potential, @, is the first term, which is writien
in terms of B and E field in line (17) and this term depends only on & 2nd

¥
not its gradient. Thus, the feld equation follows from the Esle-Lagrange

equation which is
(0

K3 0¥ A KBE’*”’
ox'\ao,] ¢ =~ b
The left-hand member of (30) gives rise to the field equation for the gravita-

tional field alone and has already been derived in the previous paper.
Thus, (30) then becomes

'Y ¢ 3@' gy -z3g"
. £ il XL el

&nG

<l
T 3ep 2 s | I ds3(x! — zh) 2y 2, 5 d,jli + ¥z

@i
aﬁzﬁ *;y .

orin vector notation for Cartesian coordinates '{pt:rfoming the integratioa
using 7 = 2% as the integration variable).

19 fioe® )
edt\c ot )—V ?
21 + @)
2 S el
41:6 zmg 03!; ) /(} v\(l—!—tb 1_£
= -‘--a@azs ch-éEl} (32

If (31) is divided throughout by +/—g then the first term on the left is
the wave operator, the second term is the energy density of the gravitational
field times 4rG/ey?, the third term is the energy-momentum density of the
material sources of field times 4nG/c,? and the term on the right is the energy
density of the electromagnetic field times 4nG/fce®. The energy dansity of
the electromagnetic field is known not to be an invariant. However, these
interpretations suggest an invariant definition for the energy density of
the electromagnetic field as

- g
8 =3y P e (- /(5)8™ 8" (33a)
g o

-~y
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or in the Cartesian system this reads
——je i e -1r) (33t)

the quantity in parcntheses is recognised as one of the Maxwell invariants,
“Yhat this indeed is the energy density is clear from the fact that ¢ = ge™?®
80 ihat {33b) becoimes

1
= % el
& %(B .~ 252}

{In conventional units this is twice the energy density divided by 2}

“The same result is obtained in any coordinate sysiem, since the action
priocipal is made to undergo the transformation; so, for example, the
resuli of a Lorentz transformation would be that (33b) would read

gxm.!ﬁo a ( Biz § ZI;E,Z)

which is seen {o give the energy density in the now frame.

The thivd term on thé left side of {.aﬂ which wasrefermng 1o 85 the energy-
momentum density of matter is recognised as being similar to the trace of
the usual maiter tensor. In fact, the differential of the guantity in brackeis
iy be written as

21+ B)g,+ (1 + @}2359

For weak fields, g,; may be expanded in a pQWEf series in @ about the
Minkowski metric #, ;- Thus

gi; = My + ruu ‘%‘,'«’1
so that to terms linear in @ these two terms may be written as

20+ Pygy+ {1+ ¢)zh§§)
oT
(1 + é)r'u + (I + 4@)'[1(1)

This term in the field equation (31) becomes
4!;6
‘5 m, { ds&(e— )1 + B+ 30+ OV A 2, 24
The deviation of the brackets from unity represents the influence of the
gravitational field and the state of the motion on the aciive gravitational

mass. We shail define the active gravitational mass {in units of length) of
a body as

Gm‘, d -
v i—g}m = ’. ds 80 = 2(0) 2y oy 55 36 [(1+&)g,] (34a)
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. The inertial passive mass may by dsﬁmnon be-read off from the equaticas
of motion. Thus

af(-x;wm”;} 1+ P (34b)

Hal the distribotion of the paﬂici: not been chosen as $(x' - 24,)) bot
“gather some soalar density p(ot, 22 ) then (345 wonld read

= rmds >

) MF = T2 f B xp(et ) (1 4 B (34c)

and thus the structure of maiter would influence its mouion. This would
mean g violatiop of E6tvis experiments, ic. 2 non-pull result, in principle.
Tt is obvious, however, that to test such a suppostilon would require bodies
with the dimension of planets. These two definitions of mass have a most
satisfying interpretation in terms of Aristotelian metaphysics. The quantity
1, is the inherent quality and quantity of matter. It is the indestructible
form from which the attributes of active and passive mass derive. We may
also define an equivalent electromagnetic mass-radius density

»“"\
u
,

aine®

Vi{-g)M? = =2 tﬁzéeﬂj o a@{vﬂ&g;g

Similarly, we may define 2n eguivalent mass-tadius density fo the
gravitational feld

o 1 3/~ g)g”
7 G e Y EIE
VERM = =g & F; {35b)
“Thus, {31) may be written
PO ==4n3 M+ 4nM* +4nMC (362)
where : ) B
1 9 { g
== — / -—_ b__

In Cartesian coordinates with the dependence of the speed of light from
(1) introduced, (31) simplifies to the form

i g 1 8::” y
. gz & __ =4 - X A __ fm AL oD
- —-'at(* 5t ,} ne ﬁr! 4nMfe (36b)

where now

MA=

(x— 2D /61~ 20 + B 1= g ‘“ﬁ’]

[
ME= sgi(b éE“)

q
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and

2

ﬁam"’“'

£

For such velocities that B, < 1 ihen

Ay A
M=

=761+ D)1 +20) 5 - 2,00)

The *eleciromagnetic musy” is thus seen 1o be repulsive. This interpretation
is, however, quite crude since the energy density of the electromagnetic
field pmsnmab?y not koeatised as » dehia function. A beirer analogy fox
interpretation is to be found from weave mechanics. The electromagnetic
mass appears 2s a potential well

“The electromagnetic field thus acts as a dispersive medium fn:: ravita-

tional waves. The wave equation for gravitational waves is. of course,
non-linear; in fact, writing out the D¥alembertian, {36b) reads

10 . N
v ,.2 m{ 53 j:) o2 V2 - 4 M? o = —4n ;?; MASx—z,(the (3D
whers we have set
p=e°

1t is not obvious that wave solutions do exist; however, to the extent that
the equation may be linearised. ie.

gl
we obtain
S;f+cﬁzvz¢ 4“‘}“@ ~4n 3 M ANx ~ 21N

=—dnMf —4n 3 M 6(x —z,,(1)) (38)

Field of a Static, Spherically Symmetric Charged Particle
For this case, the field equation {37) reduces to

14/ ,de %\ mﬁé{r}
e 22 ® = gy { .
= dr( } 4rniffe {39)

v E 2
Cog™ £

Let us denote the charge on the pamcie by Ze whers ¢ is the charge of an
electron (1+6 x 10™*? coul) and Z is the mL!fmnc:s of such charges. The
electromagnetic mass density is given by

85 yia - Ze )-

M= S B
32 'a,.x’: q.é.z/
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The previously made choice as to how the electromagnetic influence
parameters, ;2 and £, shouvld depend on & was

R L a B o (40)
The electromagnetic mass density then reads
e ﬂazzeﬂ
4,(41!}2
znd is then independent of ¢,
“The first two Mazwell equations, (11} and {12) simplily in that cp = ¢y g,
which is 2 constant. Alse, the eguations of motion, (28} simplify. The

right-hand side reduces ic the familiar expression for the Loreniz force.
) Equatzon {35) may be written

S 2{23 . F ﬁ@iﬁ 7,
p f 7 ) ~ €% = iy P 41}
where
’ ZrEC
x= Breg?

which 15 5» numerical terms approximatsiy
a=10""2m* x 22

If we express the solution to (41 25

- mG
€ P e § E;}”; -+ Fir} | (42)
then f(r) satisfies the equation
1d - mG N\ e
':iéi‘r‘(fzf)-%;;(i-%cg:!v_s'}xg {43}

We seek solutions which vanish at infieity. Thus, we assumed a series

expansion of the forin
=
=3

Substituting into (43) and solving for the coefficients we find for the first
three
d; o ﬂ
a; =i
2 mG
2182

o€

12
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_and penerally the recursion forroula

o o
%zm”mﬂﬁ
50 that
2
mG giﬁngZ_“{“" ) @5

21’ éd‘m',, r?

=] b

If we apply these results to a proton we find that approximately

03 10‘ ot .
—— @s)

gF=14

The quantity 1075 is the grawtatlonal radius of the proton. The two terms
on the rrght are of the same magnitude at r - = 107** m. For the sun the
gravitationa! radius is 1470 m. It is hard to imagine that the second term
could be tmporiant for objects the size of stars. In fact, for a siar the size
of the sun in order that this term should be comparable with the 1/r term
iwould reguire 10%* free proioss.

Swrmmary

“The coupling of the previously devefopeé scalar theory o “*'&vitatzeﬂ
“tothe ele*&om&gﬂetm field has been accomplished. The z.,m.pl ng constant
is determined to be about 1078, The speed of iight and ﬂm e]ex:.zm*nagmn!‘
influence parameters are given by the formulas ¢ = o870,y = 1pe?® and
& ='g,6?®. The Maxwell equations read in vector notation

V.D=p

VXH—-%E-} J

V.(B)=0
E(CB)

V x (cE) +

So it is only the last twe Maxwell equations which are altered by_ihé
gravitational field.
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